Variability in Distal Femoral Anatomy in Patients Undergoing Total Knee Arthroplasty: Measurements on 13,546 Computed Tomography Scans

Gokhan Meric, MD,MD, Guilherme C. Gracitelli, MD, MD, Luke J. Aram, BS, MD, Michael L. Swank, MD, William D. Bugbee, MD

Abstract

Proper mechanical and rotational alignment plays an important role in achieving the success of the total knee arthroplasty (TKA). The purpose of the present study was to retrospectively determine with computed tomography (CT) the distal femoral valgus angle (DFVA) and femoral rotation angle (FRA). Our cohort included 13,546 CT scans of patients undergoing TKA. The average DFVA was 5.7 ± 2.3° (range from 1 to 16°) with 13.8% of patients identified as outliers. The distal FRA angle average was 3.3 ± 1.5° (range from 3 to 11°) with 2.8% of patients identified as outliers. These data can be useful in making orthopedic surgeons aware of the variability of femoral anatomy. Using the same cutting angle may lead to malposition of the femoral component.

Proper limb alignment and implant positioning are important to the success of total knee arthroplasty (TKA) [1,2]. Incorrect mechanical alignment is related to early implant wear, implant loosening and instability of the prosthesis [3,4]. Alignment within a range of ±3° from the mechanical axis is desired and associated with better outcomes [1,2]. Although many studies reported the benefits of proper postoperative alignment on the outcomes of TKA, some clinical studies could not correlate proper alignment with a longer implant survivorship at long-term follow-up [5,6]. Despite the controversy on this topic, the standard surgical technique of TKA should aim to maintain proper alignment.

In order to have a postoperative proper alignment, conventional knee arthroplasty instrumentation typically aligns and places implants based on the population’s average anatomy. In the TKA surgical technique, with intramedullary (IM) femoral alignment guides, the distal femoral resection is typically set at 5° to 7° from the anatomical axis in order to make the resection perpendicular (0°) to the mechanical axis of the femur. This technique is based on the average angle between the anatomic and mechanical axis of the femur, which is known to be 5° to 7° [7–9]. Numerous studies have documented the use of an IM guide to malalignment of the femoral component of greater than 3° in up to 20% of cases [10]. Additional studies have reported considerable variations in the distal femoral valgus angle (DFVA) between patients [8,11]. In outlier patients, using same cutting angles may lead to high incidence of malalignment.

Rotational alignment of the femoral component in TKA plays an important role in achieving varus-valgus stability and patellofemoral tracking [12]. To create the appropriate femoral component rotation, the posterior condylar axis, anteroposterior axis, and transepicondylar axis have been proposed [13,14]. High variability in the femoral rotational angle (FRA) associated with all techniques has been reported [13,15,16]. With the measured resection techniques, the femoral component is typically placed 3° externally rotated to the posterior condylar line. Distal femoral anatomic abnormalities may lead to rotational malalignment when the measured resection technique is used.

Frequently, surgeons do not assess the native distal femoral anatomy preoperatively, considering the average value in the nonarthritic population. Using the standard instrumentation guides for the distal femoral resections may lead to femoral component malposition and malalignment in cases that had anatomic variability in distal femur. The purpose of this study was to determine the DFVA and FRA in a large number of patients undergoing TKA in an effort to better
understand both average femoral anatomy and the incidence of “outliers” in this arthritic population.

Material Methods

We analyzed 13,546 computed tomography (CT) scans of osteoarthritic patients undergoing TKA with patient-specific instruments using Amira visualization software (Visual Science Group, Burlington, MA, USA) and NX computer-aided design software (Siemens Corporation, Berlin, Germany). Sixty-one percent were female patients ($n = 8241$) and 39% were male ($n = 5305$). Limb alignment was identified as varus in 81% ($n = 11,021$) valgus in 19% ($n = 2525$) with a range from 27 varus to 22° valgus. Average patient age was 65.4 ± 10.3.

All CT scans included the hip, knee, and ankle. Three-dimensional reconstructions were performed on each scan and key landmarks were identified in Amira and NX software. The DFVA (also termed the femoral mechanical–anatomical axis) was defined as the difference between the anatomic and mechanical axes in the coronal plane (Fig. 1). The hip center was defined as the geometric center of the femoral head as defined by a best-fit sphere. The mechanical axis was defined as the line connecting the hip center and knee center. The line connecting 2 mid-diaphyseal points defined the anatomic axis of the femur.

The angle between the posterior condylar axis and the epicondylar axis in the axial plane defined FRA (Fig. 2). The posterior condylar line was defined by two points, each on the most posterior surface of the medial and lateral condyles. The transepicondylar axis was also defined by two points, one point was on the medial epicondyle (sulcus) and one point was on the lateral epicondyle (prominence). All measurements were digitally measured using NX software.

The patient’s anatomy was categorized as an outlier if femoral valgus or rotation deviated more than 3° from the measure average. All data were collected and analyzed utilizing Microsoft Excel software (Microsoft Corporation, Redmond, WA). Data were analyzed using Anova analysis.

All engineers involved with this study were trained in the use of Amira software, NX software, and knee anatomy. CT scans, which we measured for our study, were used for the patient-specific knee prosthesis. To assess reliability of the femoral mechanical axis and DFR measurements, a subsample of 11 engineers were identified to perform a repeat reading of CT scans. Engineers were blinded to the test. Six replicates were completed for 10 CT scans, for a total of 60 measures. All repeat measurements were ±0.1°, showing high reliability.

Results

The average DFVA was $5.7 ± 2.3°$ (range 1°–16°). The average DFVA of the males was $5.82 ± 2.25°$ and females $5.65 ± 2.35°$. The range of DFVA was 1° varus to 16° valgus (Fig. 3). Outliers in DFVA were identified in 13.8% of scans (Fig. 4).

The average distal FRA was $3.3 ± 1.5°$ (range 3° internal rotation to −11° external rotation) (Fig. 5). The average FRA for male patients was $3.1 ± 1.5°$ and the average FRA for females was $3.3 ± 1.5°$. Outliers in femoral rotation were identified in 2.8% of scans (Fig. 6). All outlier data are shown in Table 1.

Discussion

This study demonstrated that the DFVA is highly variable in patients undergoing TKA. To our knowledge, this is the largest study designed to evaluate patients using modern CT scan data and accurate 3-dimensional (3D) computer modeling. CT is an excellent imaging...
Outliers of the femoral rotation angles are shown with blue columns. Females and valgus knees having smaller angles [9]. These results are knees having larger femoral mechanical angles (mean 5.7°, range 2 to 25° osteoarthritic limbs with full-length radiographs and found 18.8% TKA. Utilizing hip to ankle radiographs, they showed that 28.6% of and mechanical axes in a study of 495 patients undergoing primary malrotation in patient who have anatomic variability in distal femur. Using the conventional instrumentation with the same cutting angle for the distal femoral resections may lead to femoral component malposition in patient who have anatomic variability in distal femur. Several studies reported variability in the DFVA. Nam et al found similar variability in the relationship between distal femoral anatomic and mechanical axes in a study of 495 patients undergoing primary TKA. Utilizing hip to ankle radiographs, they showed that 28.6% of patients were outside the range of 5 ± 2° [17]. Mullaji et al studied 250 osteoarthritic limbs with full-length radiographs and found 18.8% had a femoral mechanical–anatomical axis greater than 9° [18]. Deakin et al analyzed 174 radiographs and also showed a wide distribution of femoral angles (mean 5.7°, range 2 to −9°), with males and varus knees having larger femoral mechanical–anatomical valgus angles and varus and valgus knees having smaller angles [9]. These results are modality for identifying bony landmarks and determining 3D geometry. The large sample size and accurate 3D measurements allow precise measurements of anatomic variables. We found the FRA had large angle range and the incidence of DFVA outliers to be more than 13%. Using the conventional instrumentation with the same cutting angle for the distal femoral resections may lead to femoral component malposition in patients. Preoperative planning is important to achieve proper alignment. Surgeons should be aware of the anatomy patients present at the time of TKA. The relationship of component alignment to TKA clinical outcome has been reported in the literature. The distal femoral anatomy is highly variable in the population of patients undergoing TKA. Using the same cutting angle for the distal femoral resection may lead to femoral component malposition. Several studies reported a strong relationship between the proper implant alignment and position and the stability and lower rate of implant loosening. Ritter et al reported a significant correlation between varus or valgus malalignment of the TKA and the prosthesis failure in a study of 6070 patients [25]. Fang et al reported that poor anatomic alignment of the TKA was associated with a 6.9 times greater risk of implant failure [26]. Sharkey et al reported 212 revision TKAs where more than half of the patients who had revision surgeries presented with instability, malalignment or malposition, and failure of the fixation [27]. However some studies could find no relationship between alignment and implant survivorship. Parratte et al reported 398 TKA with 15 years follow-up. One Hundred six knees were outliers (mechanical axis of beyond 0 ± 3°). No correlation between mechanical alignments and implant survivorship at 15 years was found. They concluded that mechanical axis of 0 ± 3° did not improve the implant survival in long-term follow-up [6]. This study was not designed to look at outcome-related alignment but rather to define the anatomy patients present at the time of TKA. Another consideration of this study was that we performed the
measurements in osteoarthritic knees and our findings might not represent normal knee anatomy. However, our findings in the knees with osteoarthritis are useful information to guide surgeons during TKA surgeries.

The anatomic information gained from this large number of patients should be useful in confirming the high variability of these measurements seen in other studies and alert surgeons that routine use of guides without adequate measurement of the anatomic and mechanical axes of the distal femur can result in distal femoral resections in those that are not perpendicular to the mechanical axis. These findings suggest that routine use of conventional instruments and average distal femoral valgus angular resections can lead to deviation from neutral mechanical alignment of the femoral component in a significant number of outliers’ and result in mechanical limb malalignment. Also using traditional instrumentation that reference the femur posterior condyle without adequate corrections may lead to wrong rotation of the femoral implant in the outlier patient population [28].

Conclusions

Proper mechanical axis and rotational alignment are desirable goals during TKA. The present study was done with a large number of patients with knee arthritis, who undergo TKA. These data can be useful in making orthopedic surgeons aware of the variability of femoral anatomy in the arthritic knee. Using the same cutting angle may lead to malposition of the femoral component and mechanical limb malalignment with a significant number of outliers. Surgeons should be aware of the variability of the distal femur in patients undergoing TKA and perform additional measurements preoperatively to achieve proper alignment. To improve accuracy in TKA, current and future techniques and instrumentation should consider technical adjustments.

References

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N° and %</td>
<td>N° and %</td>
<td>N° and %</td>
</tr>
<tr>
<td>FRAa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 0°</td>
<td>16 (0.2%)</td>
<td>13 (0.2%)</td>
<td>29 (0.2%)</td>
</tr>
<tr>
<td>More than 6°</td>
<td>231 (2.8%)</td>
<td>122 (2.3%)</td>
<td>353 (2.6%)</td>
</tr>
<tr>
<td>DFVAb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 4°</td>
<td>602 (7.3%)</td>
<td>306 (5.8%)</td>
<td>908 (6.7%)</td>
</tr>
<tr>
<td>More than 9°</td>
<td>590 (7.1%)</td>
<td>382 (7.2%)</td>
<td>972 (7.2%)</td>
</tr>
</tbody>
</table>

a n number of patients.

b FRA femur rotational angle.

c DFVA distal femoral valgus angle.

Fig. 6. Three-dimensional reconstructions of three femurs and definition of the femoral rotation angles are shown. Left femur is an outlier with a femoral rotation angle of less than 0°.

Middle femur is a typical femur with a femoral rotation angle of 3.2°.

Right femur is an outlier with a femoral rotation angle of greater than 6°.